Highest vectors of representations (total 22) ; the vectors are over the primal subalgebra. | \(g_{-4}\) | \(-h_{6}-1/2h_{5}+1/2h_{3}+h_{1}\) | \(h_{4}\) | \(g_{4}\) | \(g_{5}+g_{3}\) | \(-g_{10}+g_{9}\) | \(-g_{21}+3g_{20}\) | \(g_{24}+3/4g_{14}+3/4g_{13}\) | \(g_{15}\) | \(-g_{18}+3g_{17}\) | \(g_{25}\) | \(g_{28}\) | \(-g_{27}+1/4g_{19}\) | \(-g_{30}+1/4g_{23}\) | \(g_{22}\) | \(g_{26}\) | \(g_{31}\) | \(g_{33}+g_{32}\) | \(g_{29}\) | \(g_{34}\) | \(g_{35}\) | \(g_{36}\) |
weight | \(0\) | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) | \(\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(3\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(4\omega_{1}\) | \(5\omega_{1}\) | \(5\omega_{1}\) | \(6\omega_{1}\) |
weights rel. to Cartan of (centralizer+semisimple s.a.). | \(-4\psi_{1}\) | \(0\) | \(0\) | \(4\psi_{1}\) | \(\omega_{1}-2\psi_{1}\) | \(\omega_{1}+2\psi_{1}\) | \(2\omega_{1}-6\psi_{2}\) | \(2\omega_{1}\) | \(2\omega_{1}\) | \(2\omega_{1}+6\psi_{2}\) | \(3\omega_{1}-2\psi_{1}-6\psi_{2}\) | \(3\omega_{1}+2\psi_{1}-6\psi_{2}\) | \(3\omega_{1}-2\psi_{1}\) | \(3\omega_{1}+2\psi_{1}\) | \(3\omega_{1}-2\psi_{1}+6\psi_{2}\) | \(3\omega_{1}+2\psi_{1}+6\psi_{2}\) | \(4\omega_{1}-6\psi_{2}\) | \(4\omega_{1}\) | \(4\omega_{1}+6\psi_{2}\) | \(5\omega_{1}-2\psi_{1}\) | \(5\omega_{1}+2\psi_{1}\) | \(6\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{-4\psi_{1}} \) → (0, -4, 0) | \(\displaystyle V_{0} \) → (0, 0, 0) | \(\displaystyle V_{4\psi_{1}} \) → (0, 4, 0) | \(\displaystyle V_{\omega_{1}-2\psi_{1}} \) → (1, -2, 0) | \(\displaystyle V_{\omega_{1}+2\psi_{1}} \) → (1, 2, 0) | \(\displaystyle V_{2\omega_{1}-6\psi_{2}} \) → (2, 0, -6) | \(\displaystyle V_{2\omega_{1}} \) → (2, 0, 0) | \(\displaystyle V_{2\omega_{1}+6\psi_{2}} \) → (2, 0, 6) | \(\displaystyle V_{3\omega_{1}-2\psi_{1}-6\psi_{2}} \) → (3, -2, -6) | \(\displaystyle V_{3\omega_{1}+2\psi_{1}-6\psi_{2}} \) → (3, 2, -6) | \(\displaystyle V_{3\omega_{1}-2\psi_{1}} \) → (3, -2, 0) | \(\displaystyle V_{3\omega_{1}+2\psi_{1}} \) → (3, 2, 0) | \(\displaystyle V_{3\omega_{1}-2\psi_{1}+6\psi_{2}} \) → (3, -2, 6) | \(\displaystyle V_{3\omega_{1}+2\psi_{1}+6\psi_{2}} \) → (3, 2, 6) | \(\displaystyle V_{4\omega_{1}-6\psi_{2}} \) → (4, 0, -6) | \(\displaystyle V_{4\omega_{1}} \) → (4, 0, 0) | \(\displaystyle V_{4\omega_{1}+6\psi_{2}} \) → (4, 0, 6) | \(\displaystyle V_{5\omega_{1}-2\psi_{1}} \) → (5, -2, 0) | \(\displaystyle V_{5\omega_{1}+2\psi_{1}} \) → (5, 2, 0) | \(\displaystyle V_{6\omega_{1}} \) → (6, 0, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | \(W_{2}\) | \(W_{3}\) | \(W_{4}\) | \(W_{5}\) | \(W_{6}\) | \(W_{7}\) | \(W_{8}\) | \(W_{9}\) | \(W_{10}\) | \(W_{11}\) | \(W_{12}\) | \(W_{13}\) | \(W_{14}\) | \(W_{15}\) | \(W_{16}\) | \(W_{17}\) | \(W_{18}\) | \(W_{19}\) | \(W_{20}\) | \(W_{21}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
|
| Semisimple subalgebra component.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(0\) | \(0\) | \(0\) | \(\omega_{1}\) \(-\omega_{1}\) | \(\omega_{1}\) \(-\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(5\omega_{1}\) \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) \(-5\omega_{1}\) | \(5\omega_{1}\) \(3\omega_{1}\) \(\omega_{1}\) \(-\omega_{1}\) \(-3\omega_{1}\) \(-5\omega_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(-4\psi_{1}\) | \(0\) | \(4\psi_{1}\) | \(\omega_{1}-2\psi_{1}\) \(-\omega_{1}-2\psi_{1}\) | \(\omega_{1}+2\psi_{1}\) \(-\omega_{1}+2\psi_{1}\) | \(2\omega_{1}-6\psi_{2}\) \(-6\psi_{2}\) \(-2\omega_{1}-6\psi_{2}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) | \(2\omega_{1}+6\psi_{2}\) \(6\psi_{2}\) \(-2\omega_{1}+6\psi_{2}\) | \(3\omega_{1}-2\psi_{1}-6\psi_{2}\) \(\omega_{1}-2\psi_{1}-6\psi_{2}\) \(-\omega_{1}-2\psi_{1}-6\psi_{2}\) \(-3\omega_{1}-2\psi_{1}-6\psi_{2}\) | \(3\omega_{1}+2\psi_{1}-6\psi_{2}\) \(\omega_{1}+2\psi_{1}-6\psi_{2}\) \(-\omega_{1}+2\psi_{1}-6\psi_{2}\) \(-3\omega_{1}+2\psi_{1}-6\psi_{2}\) | \(3\omega_{1}-2\psi_{1}\) \(\omega_{1}-2\psi_{1}\) \(-\omega_{1}-2\psi_{1}\) \(-3\omega_{1}-2\psi_{1}\) | \(3\omega_{1}+2\psi_{1}\) \(\omega_{1}+2\psi_{1}\) \(-\omega_{1}+2\psi_{1}\) \(-3\omega_{1}+2\psi_{1}\) | \(3\omega_{1}-2\psi_{1}+6\psi_{2}\) \(\omega_{1}-2\psi_{1}+6\psi_{2}\) \(-\omega_{1}-2\psi_{1}+6\psi_{2}\) \(-3\omega_{1}-2\psi_{1}+6\psi_{2}\) | \(3\omega_{1}+2\psi_{1}+6\psi_{2}\) \(\omega_{1}+2\psi_{1}+6\psi_{2}\) \(-\omega_{1}+2\psi_{1}+6\psi_{2}\) \(-3\omega_{1}+2\psi_{1}+6\psi_{2}\) | \(4\omega_{1}-6\psi_{2}\) \(2\omega_{1}-6\psi_{2}\) \(-6\psi_{2}\) \(-2\omega_{1}-6\psi_{2}\) \(-4\omega_{1}-6\psi_{2}\) | \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) | \(4\omega_{1}+6\psi_{2}\) \(2\omega_{1}+6\psi_{2}\) \(6\psi_{2}\) \(-2\omega_{1}+6\psi_{2}\) \(-4\omega_{1}+6\psi_{2}\) | \(5\omega_{1}-2\psi_{1}\) \(3\omega_{1}-2\psi_{1}\) \(\omega_{1}-2\psi_{1}\) \(-\omega_{1}-2\psi_{1}\) \(-3\omega_{1}-2\psi_{1}\) \(-5\omega_{1}-2\psi_{1}\) | \(5\omega_{1}+2\psi_{1}\) \(3\omega_{1}+2\psi_{1}\) \(\omega_{1}+2\psi_{1}\) \(-\omega_{1}+2\psi_{1}\) \(-3\omega_{1}+2\psi_{1}\) \(-5\omega_{1}+2\psi_{1}\) | \(6\omega_{1}\) \(4\omega_{1}\) \(2\omega_{1}\) \(0\) \(-2\omega_{1}\) \(-4\omega_{1}\) \(-6\omega_{1}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{-4\psi_{1}}\) | \(\displaystyle M_{0}\) | \(\displaystyle M_{4\psi_{1}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{1}}\oplus M_{-\omega_{1}-2\psi_{1}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{1}}\oplus M_{-\omega_{1}+2\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}-6\psi_{2}}\oplus M_{-6\psi_{2}}\oplus M_{-2\omega_{1}-6\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+6\psi_{2}}\oplus M_{6\psi_{2}}\oplus M_{-2\omega_{1}+6\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}-2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{1}-2\psi_{1}-6\psi_{2}}\oplus M_{-\omega_{1}-2\psi_{1}-6\psi_{2}} \oplus M_{-3\omega_{1}-2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{-\omega_{1}+2\psi_{1}-6\psi_{2}} \oplus M_{-3\omega_{1}+2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}-2\psi_{1}}\oplus M_{\omega_{1}-2\psi_{1}}\oplus M_{-\omega_{1}-2\psi_{1}}\oplus M_{-3\omega_{1}-2\psi_{1}}\) | \(\displaystyle M_{3\omega_{1}+2\psi_{1}}\oplus M_{\omega_{1}+2\psi_{1}}\oplus M_{-\omega_{1}+2\psi_{1}}\oplus M_{-3\omega_{1}+2\psi_{1}}\) | \(\displaystyle M_{3\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{-\omega_{1}-2\psi_{1}+6\psi_{2}} \oplus M_{-3\omega_{1}-2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}+2\psi_{1}+6\psi_{2}}\oplus M_{\omega_{1}+2\psi_{1}+6\psi_{2}}\oplus M_{-\omega_{1}+2\psi_{1}+6\psi_{2}} \oplus M_{-3\omega_{1}+2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-6\psi_{2}}\oplus M_{2\omega_{1}-6\psi_{2}}\oplus M_{-6\psi_{2}}\oplus M_{-2\omega_{1}-6\psi_{2}}\oplus M_{-4\omega_{1}-6\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+6\psi_{2}}\oplus M_{2\omega_{1}+6\psi_{2}}\oplus M_{6\psi_{2}}\oplus M_{-2\omega_{1}+6\psi_{2}}\oplus M_{-4\omega_{1}+6\psi_{2}}\) | \(\displaystyle M_{5\omega_{1}-2\psi_{1}}\oplus M_{3\omega_{1}-2\psi_{1}}\oplus M_{\omega_{1}-2\psi_{1}}\oplus M_{-\omega_{1}-2\psi_{1}}\oplus M_{-3\omega_{1}-2\psi_{1}} \oplus M_{-5\omega_{1}-2\psi_{1}}\) | \(\displaystyle M_{5\omega_{1}+2\psi_{1}}\oplus M_{3\omega_{1}+2\psi_{1}}\oplus M_{\omega_{1}+2\psi_{1}}\oplus M_{-\omega_{1}+2\psi_{1}}\oplus M_{-3\omega_{1}+2\psi_{1}} \oplus M_{-5\omega_{1}+2\psi_{1}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{-4\psi_{1}}\) | \(\displaystyle 2M_{0}\) | \(\displaystyle M_{4\psi_{1}}\) | \(\displaystyle M_{\omega_{1}-2\psi_{1}}\oplus M_{-\omega_{1}-2\psi_{1}}\) | \(\displaystyle M_{\omega_{1}+2\psi_{1}}\oplus M_{-\omega_{1}+2\psi_{1}}\) | \(\displaystyle M_{2\omega_{1}-6\psi_{2}}\oplus M_{-6\psi_{2}}\oplus M_{-2\omega_{1}-6\psi_{2}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\) | \(\displaystyle M_{2\omega_{1}+6\psi_{2}}\oplus M_{6\psi_{2}}\oplus M_{-2\omega_{1}+6\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}-2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{1}-2\psi_{1}-6\psi_{2}}\oplus M_{-\omega_{1}-2\psi_{1}-6\psi_{2}} \oplus M_{-3\omega_{1}-2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{\omega_{1}+2\psi_{1}-6\psi_{2}}\oplus M_{-\omega_{1}+2\psi_{1}-6\psi_{2}} \oplus M_{-3\omega_{1}+2\psi_{1}-6\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}-2\psi_{1}}\oplus M_{\omega_{1}-2\psi_{1}}\oplus M_{-\omega_{1}-2\psi_{1}}\oplus M_{-3\omega_{1}-2\psi_{1}}\) | \(\displaystyle M_{3\omega_{1}+2\psi_{1}}\oplus M_{\omega_{1}+2\psi_{1}}\oplus M_{-\omega_{1}+2\psi_{1}}\oplus M_{-3\omega_{1}+2\psi_{1}}\) | \(\displaystyle M_{3\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{\omega_{1}-2\psi_{1}+6\psi_{2}}\oplus M_{-\omega_{1}-2\psi_{1}+6\psi_{2}} \oplus M_{-3\omega_{1}-2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{3\omega_{1}+2\psi_{1}+6\psi_{2}}\oplus M_{\omega_{1}+2\psi_{1}+6\psi_{2}}\oplus M_{-\omega_{1}+2\psi_{1}+6\psi_{2}} \oplus M_{-3\omega_{1}+2\psi_{1}+6\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}-6\psi_{2}}\oplus M_{2\omega_{1}-6\psi_{2}}\oplus M_{-6\psi_{2}}\oplus M_{-2\omega_{1}-6\psi_{2}}\oplus M_{-4\omega_{1}-6\psi_{2}}\) | \(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\) | \(\displaystyle M_{4\omega_{1}+6\psi_{2}}\oplus M_{2\omega_{1}+6\psi_{2}}\oplus M_{6\psi_{2}}\oplus M_{-2\omega_{1}+6\psi_{2}}\oplus M_{-4\omega_{1}+6\psi_{2}}\) | \(\displaystyle M_{5\omega_{1}-2\psi_{1}}\oplus M_{3\omega_{1}-2\psi_{1}}\oplus M_{\omega_{1}-2\psi_{1}}\oplus M_{-\omega_{1}-2\psi_{1}}\oplus M_{-3\omega_{1}-2\psi_{1}} \oplus M_{-5\omega_{1}-2\psi_{1}}\) | \(\displaystyle M_{5\omega_{1}+2\psi_{1}}\oplus M_{3\omega_{1}+2\psi_{1}}\oplus M_{\omega_{1}+2\psi_{1}}\oplus M_{-\omega_{1}+2\psi_{1}}\oplus M_{-3\omega_{1}+2\psi_{1}} \oplus M_{-5\omega_{1}+2\psi_{1}}\) | \(\displaystyle M_{6\omega_{1}}\oplus M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\oplus M_{-6\omega_{1}}\) |
2\\ |